\(\int \frac {\sqrt {e x} (a+b x^2)^2}{(c+d x^2)^{5/2}} \, dx\) [860]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 403 \[ \int \frac {\sqrt {e x} \left (a+b x^2\right )^2}{\left (c+d x^2\right )^{5/2}} \, dx=\frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {(b c-a d) (3 b c+a d) (e x)^{3/2}}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e x} \sqrt {c+d x^2}}{2 c^2 d^{5/2} \left (\sqrt {c}+\sqrt {d} x\right )}-\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{2 c^{7/4} d^{11/4} \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),\frac {1}{2}\right )}{4 c^{7/4} d^{11/4} \sqrt {c+d x^2}} \]

[Out]

1/3*(-a*d+b*c)^2*(e*x)^(3/2)/c/d^2/e/(d*x^2+c)^(3/2)-1/2*(-a*d+b*c)*(a*d+3*b*c)*(e*x)^(3/2)/c^2/d^2/e/(d*x^2+c
)^(1/2)+1/2*(-a^2*d^2-2*a*b*c*d+7*b^2*c^2)*(e*x)^(1/2)*(d*x^2+c)^(1/2)/c^2/d^(5/2)/(c^(1/2)+x*d^(1/2))-1/2*(-a
^2*d^2-2*a*b*c*d+7*b^2*c^2)*(cos(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(d^(1/4)*
(e*x)^(1/2)/c^(1/4)/e^(1/2)))*EllipticE(sin(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2))),1/2*2^(1/2))*(c^(1/
2)+x*d^(1/2))*e^(1/2)*((d*x^2+c)/(c^(1/2)+x*d^(1/2))^2)^(1/2)/c^(7/4)/d^(11/4)/(d*x^2+c)^(1/2)+1/4*(-a^2*d^2-2
*a*b*c*d+7*b^2*c^2)*(cos(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(d^(1/4)*(e*x)^(1
/2)/c^(1/4)/e^(1/2)))*EllipticF(sin(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2))),1/2*2^(1/2))*(c^(1/2)+x*d^(
1/2))*e^(1/2)*((d*x^2+c)/(c^(1/2)+x*d^(1/2))^2)^(1/2)/c^(7/4)/d^(11/4)/(d*x^2+c)^(1/2)

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 403, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {474, 468, 335, 311, 226, 1210} \[ \int \frac {\sqrt {e x} \left (a+b x^2\right )^2}{\left (c+d x^2\right )^{5/2}} \, dx=\frac {\sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} \left (-a^2 d^2-2 a b c d+7 b^2 c^2\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),\frac {1}{2}\right )}{4 c^{7/4} d^{11/4} \sqrt {c+d x^2}}-\frac {\sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} \left (-a^2 d^2-2 a b c d+7 b^2 c^2\right ) E\left (2 \arctan \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{2 c^{7/4} d^{11/4} \sqrt {c+d x^2}}+\frac {\sqrt {e x} \sqrt {c+d x^2} \left (-a^2 d^2-2 a b c d+7 b^2 c^2\right )}{2 c^2 d^{5/2} \left (\sqrt {c}+\sqrt {d} x\right )}-\frac {(e x)^{3/2} (a d+3 b c) (b c-a d)}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {(e x)^{3/2} (b c-a d)^2}{3 c d^2 e \left (c+d x^2\right )^{3/2}} \]

[In]

Int[(Sqrt[e*x]*(a + b*x^2)^2)/(c + d*x^2)^(5/2),x]

[Out]

((b*c - a*d)^2*(e*x)^(3/2))/(3*c*d^2*e*(c + d*x^2)^(3/2)) - ((b*c - a*d)*(3*b*c + a*d)*(e*x)^(3/2))/(2*c^2*d^2
*e*Sqrt[c + d*x^2]) + ((7*b^2*c^2 - 2*a*b*c*d - a^2*d^2)*Sqrt[e*x]*Sqrt[c + d*x^2])/(2*c^2*d^(5/2)*(Sqrt[c] +
Sqrt[d]*x)) - ((7*b^2*c^2 - 2*a*b*c*d - a^2*d^2)*Sqrt[e]*(Sqrt[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqr
t[d]*x)^2]*EllipticE[2*ArcTan[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], 1/2])/(2*c^(7/4)*d^(11/4)*Sqrt[c + d*x^2
]) + ((7*b^2*c^2 - 2*a*b*c*d - a^2*d^2)*Sqrt[e]*(Sqrt[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2
]*EllipticF[2*ArcTan[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], 1/2])/(4*c^(7/4)*d^(11/4)*Sqrt[c + d*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 468

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d
))*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b*e*n*(p + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a
*b*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0]
 && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0]
&& LeQ[-1, m, (-n)*(p + 1)]))

Rule 474

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[(-(b*c - a*
d)^2)*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b^2*e*n*(p + 1))), x] + Dist[1/(a*b^2*n*(p + 1)), Int[(e*x)^m*(a +
 b*x^n)^(p + 1)*Simp[(b*c - a*d)^2*(m + 1) + b^2*c^2*n*(p + 1) + a*b*d^2*n*(p + 1)*x^n, x], x], x] /; FreeQ[{a
, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps \begin{align*} \text {integral}& = \frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {\int \frac {\sqrt {e x} \left (-\frac {3}{2} \left (2 a^2 d^2-(b c-a d)^2\right )-3 b^2 c d x^2\right )}{\left (c+d x^2\right )^{3/2}} \, dx}{3 c d^2} \\ & = \frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {(b c-a d) (3 b c+a d) (e x)^{3/2}}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \int \frac {\sqrt {e x}}{\sqrt {c+d x^2}} \, dx}{4 c^2 d^2} \\ & = \frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {(b c-a d) (3 b c+a d) (e x)^{3/2}}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 c^2 d^2 e} \\ & = \frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {(b c-a d) (3 b c+a d) (e x)^{3/2}}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 c^{3/2} d^{5/2}}-\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \text {Subst}\left (\int \frac {1-\frac {\sqrt {d} x^2}{\sqrt {c} e}}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 c^{3/2} d^{5/2}} \\ & = \frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {(b c-a d) (3 b c+a d) (e x)^{3/2}}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e x} \sqrt {c+d x^2}}{2 c^2 d^{5/2} \left (\sqrt {c}+\sqrt {d} x\right )}-\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{2 c^{7/4} d^{11/4} \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{4 c^{7/4} d^{11/4} \sqrt {c+d x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 11.13 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.33 \[ \int \frac {\sqrt {e x} \left (a+b x^2\right )^2}{\left (c+d x^2\right )^{5/2}} \, dx=\frac {\sqrt {e x} \left (-\left ((b c-a d) x \left (a d \left (5 c+3 d x^2\right )+b c \left (7 c+9 d x^2\right )\right )\right )+3 \left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {1+\frac {c}{d x^2}} x \left (c+d x^2\right ) \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-\frac {c}{d x^2}\right )\right )}{6 c^2 d^2 \left (c+d x^2\right )^{3/2}} \]

[In]

Integrate[(Sqrt[e*x]*(a + b*x^2)^2)/(c + d*x^2)^(5/2),x]

[Out]

(Sqrt[e*x]*(-((b*c - a*d)*x*(a*d*(5*c + 3*d*x^2) + b*c*(7*c + 9*d*x^2))) + 3*(7*b^2*c^2 - 2*a*b*c*d - a^2*d^2)
*Sqrt[1 + c/(d*x^2)]*x*(c + d*x^2)*Hypergeometric2F1[-1/4, 1/2, 3/4, -(c/(d*x^2))]))/(6*c^2*d^2*(c + d*x^2)^(3
/2))

Maple [A] (verified)

Time = 3.16 (sec) , antiderivative size = 337, normalized size of antiderivative = 0.84

method result size
elliptic \(\frac {\sqrt {e x \left (d \,x^{2}+c \right )}\, \sqrt {e x}\, \left (\frac {x \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \sqrt {d e \,x^{3}+c e x}}{3 c \,d^{4} \left (x^{2}+\frac {c}{d}\right )^{2}}+\frac {e \,x^{2} \left (a^{2} d^{2}+2 a b c d -3 b^{2} c^{2}\right )}{2 d^{2} c^{2} \sqrt {\left (x^{2}+\frac {c}{d}\right ) d e x}}+\frac {\left (\frac {b^{2} e}{d^{2}}-\frac {e \left (a^{2} d^{2}+2 a b c d -3 b^{2} c^{2}\right )}{4 d^{2} c^{2}}\right ) \sqrt {-c d}\, \sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \left (-\frac {2 \sqrt {-c d}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right )}{d}+\frac {\sqrt {-c d}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right )}{d}\right )}{d \sqrt {d e \,x^{3}+c e x}}\right )}{e x \sqrt {d \,x^{2}+c}}\) \(337\)
default \(\text {Expression too large to display}\) \(1176\)

[In]

int((b*x^2+a)^2*(e*x)^(1/2)/(d*x^2+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

(e*x*(d*x^2+c))^(1/2)/e/x*(e*x)^(1/2)/(d*x^2+c)^(1/2)*(1/3/c/d^4*x*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(d*e*x^3+c*e*x)
^(1/2)/(x^2+c/d)^2+1/2/d^2*e*x^2/c^2*(a^2*d^2+2*a*b*c*d-3*b^2*c^2)/((x^2+c/d)*d*e*x)^(1/2)+(b^2/d^2*e-1/4/d^2/
c^2*e*(a^2*d^2+2*a*b*c*d-3*b^2*c^2))*(-c*d)^(1/2)/d*((x+(-c*d)^(1/2)/d)/(-c*d)^(1/2)*d)^(1/2)*(-2*(x-(-c*d)^(1
/2)/d)/(-c*d)^(1/2)*d)^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)/(d*e*x^3+c*e*x)^(1/2)*(-2*(-c*d)^(1/2)/d*EllipticE(((x+
(-c*d)^(1/2)/d)/(-c*d)^(1/2)*d)^(1/2),1/2*2^(1/2))+(-c*d)^(1/2)/d*EllipticF(((x+(-c*d)^(1/2)/d)/(-c*d)^(1/2)*d
)^(1/2),1/2*2^(1/2))))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 232, normalized size of antiderivative = 0.58 \[ \int \frac {\sqrt {e x} \left (a+b x^2\right )^2}{\left (c+d x^2\right )^{5/2}} \, dx=-\frac {3 \, {\left (7 \, b^{2} c^{4} - 2 \, a b c^{3} d - a^{2} c^{2} d^{2} + {\left (7 \, b^{2} c^{2} d^{2} - 2 \, a b c d^{3} - a^{2} d^{4}\right )} x^{4} + 2 \, {\left (7 \, b^{2} c^{3} d - 2 \, a b c^{2} d^{2} - a^{2} c d^{3}\right )} x^{2}\right )} \sqrt {d e} {\rm weierstrassZeta}\left (-\frac {4 \, c}{d}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, c}{d}, 0, x\right )\right ) + {\left (3 \, {\left (3 \, b^{2} c^{2} d^{2} - 2 \, a b c d^{3} - a^{2} d^{4}\right )} x^{3} + {\left (7 \, b^{2} c^{3} d - 2 \, a b c^{2} d^{2} - 5 \, a^{2} c d^{3}\right )} x\right )} \sqrt {d x^{2} + c} \sqrt {e x}}{6 \, {\left (c^{2} d^{5} x^{4} + 2 \, c^{3} d^{4} x^{2} + c^{4} d^{3}\right )}} \]

[In]

integrate((b*x^2+a)^2*(e*x)^(1/2)/(d*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

-1/6*(3*(7*b^2*c^4 - 2*a*b*c^3*d - a^2*c^2*d^2 + (7*b^2*c^2*d^2 - 2*a*b*c*d^3 - a^2*d^4)*x^4 + 2*(7*b^2*c^3*d
- 2*a*b*c^2*d^2 - a^2*c*d^3)*x^2)*sqrt(d*e)*weierstrassZeta(-4*c/d, 0, weierstrassPInverse(-4*c/d, 0, x)) + (3
*(3*b^2*c^2*d^2 - 2*a*b*c*d^3 - a^2*d^4)*x^3 + (7*b^2*c^3*d - 2*a*b*c^2*d^2 - 5*a^2*c*d^3)*x)*sqrt(d*x^2 + c)*
sqrt(e*x))/(c^2*d^5*x^4 + 2*c^3*d^4*x^2 + c^4*d^3)

Sympy [F]

\[ \int \frac {\sqrt {e x} \left (a+b x^2\right )^2}{\left (c+d x^2\right )^{5/2}} \, dx=\int \frac {\sqrt {e x} \left (a + b x^{2}\right )^{2}}{\left (c + d x^{2}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate((b*x**2+a)**2*(e*x)**(1/2)/(d*x**2+c)**(5/2),x)

[Out]

Integral(sqrt(e*x)*(a + b*x**2)**2/(c + d*x**2)**(5/2), x)

Maxima [F]

\[ \int \frac {\sqrt {e x} \left (a+b x^2\right )^2}{\left (c+d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{2} \sqrt {e x}}{{\left (d x^{2} + c\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((b*x^2+a)^2*(e*x)^(1/2)/(d*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^2*sqrt(e*x)/(d*x^2 + c)^(5/2), x)

Giac [F]

\[ \int \frac {\sqrt {e x} \left (a+b x^2\right )^2}{\left (c+d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{2} \sqrt {e x}}{{\left (d x^{2} + c\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((b*x^2+a)^2*(e*x)^(1/2)/(d*x^2+c)^(5/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^2*sqrt(e*x)/(d*x^2 + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {e x} \left (a+b x^2\right )^2}{\left (c+d x^2\right )^{5/2}} \, dx=\int \frac {\sqrt {e\,x}\,{\left (b\,x^2+a\right )}^2}{{\left (d\,x^2+c\right )}^{5/2}} \,d x \]

[In]

int(((e*x)^(1/2)*(a + b*x^2)^2)/(c + d*x^2)^(5/2),x)

[Out]

int(((e*x)^(1/2)*(a + b*x^2)^2)/(c + d*x^2)^(5/2), x)